
Holographic noise in a Michelson interferometer 
 

 

 

 

 this is a new effect predicted with no parameters 

Holographic “jitter” in 
beamsplitter position leads to 
fluctuations in measured 
phase between reflections in 
different directions 
 
 
 
 
Range of jitter depends on 
arm length: 
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Interferometers as Planckian clocks 

Over short (~ size of apparatus ~ microsecond) time intervals, 
interferometers can reach Planck precision (~ attometer jitter)  

 
Predicted noise in differential frequency between two directions: 

 

 
 
 

Compare to best atomic clocks (over longer times): 
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For comparison, the current atomic clock frequency inaccuracy, measured over an interval of 164967 seconds, is[28]

∆ν(τ)

ν
= 2.8× 10

−15/
�

τ/sec. (11)

Thus the holographic limit is far beyond the currently attainable level of absolute time measurements using scalar

clocks. However, over short (but still macroscopic) time intervals, Planck-scale holographic noise in relative phase

anisotropy in different directions may be detectable in cross-correlations of interferometers. For times ≈ 2L/c (that

is, up to microseconds for laboratory-scale machines), interferometers are, in this limited differential sense, by far the

most stable clocks.[29]
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Based on the above interpretation of the uncertainty, we adopt the following rule for estimating cross correlations.
Transverse holographic displacements are the same to first order on the spacelike surface defined by each null plane
wavefront, and decorrelate only slowly (to second order in ω for each mode) with transverse separation. Thus, the
differential phase perturbations in the two machines are almost the same when both pairs of laser wavefronts are
traveling in the same direction at the same time in the lab frame, with small transverse separation compared to the
propagation distance. If they are displaced or misaligned the correlation is reduced by appropriate directional and
overlap projection factors. For example, if two aligned interferometers are displaced by a small distance ∆L along
one axis, where ∆L << L, the cross correlation of measured phase displacement (in length units) becomes

Ξ×(τ) ≈ (2ctP /π)(2L− 2∆L− cτ), 0 < cτ < 2L− 2∆L (35)
= 0, cτ > 2L− 2∆L. (36)

That is, the cross correlation is the same as the autocorrelation of the largest interferometer that would fit into the
in-common spacetime volume between the two. These formulae provide concrete predictions for experimental tests
of the hypothesis (2). Assuming the theory is correctly normalized by black hole thermodynamics, there are no free
parameters in the predictions, so there is a clearly defined experimental target.

Another simple configuration to consider is two adjacent interferometers, with one arm of each parallel and adjacent
to the other but with the other arms extending in opposite directions. In this setup the spacelike surfaces defined by
wavefronts in the opposite arms never coincide. In addition, the beamsplitters are at right angles to each other and
therefore the phases of reflected light depend on precisely orthogonal components of displacement, so their signals
should be uncorrelated. This result can be derived in the operator description. For the configuration just described,
with opposite arms along axis 1, the cross correlation of the two machines A and B at zero lag (τ = 0) is

�XAXB� = �[−x1A(t)− x2A(t− 2L/c)][x1B(t)− x2B(t− 2L/c)]� (37)
= �−x1A(t)x1B(t) + x2A(t− 2L/c)x2B(t− 2L/c) (38)

−x2A(t− 2L/c)x1B(t) + x1A(t)x2B(t− 2L/c))�. (39)

In machine A, a positive displacement along axis 1 lengthens arm 1, while in machine B it shortens it; this appears as
the opposite signs for the machines in line (37). The terms in line (38) then cancel, while the summed terms in line
(39) average to zero by symmetry, so the overall cross correlation vanishes. Therefore we expect the cross correlation
in this setup to vanish, providing a useful configuration for an experimental null control. Note that cross correlation
in this setup would not vanish for fluctuations caused by gravitational waves or metric fluctuations.

COMPARISON WITH EXPERIMENTS

It is interesting to compare this Planckian directional position fluctuation with the precision of the best atomic
clocks. In the language of frequency error (or Allan variance) often used to characterize clocks, with the adopted
normalization (Eq. 29), the fractional standard deviation over a time τ is

∆ν(τ)
ν

≈ ∆t(τ)/τ =

�
2× 5.39× 10−44sec

πτ
= 1.8× 10−22/

�
τ/sec. (40)

For comparison, frequency error in the best atomic clocks is currently [33] ∆ν(τ)/ν = 2.8× 10−15/
�

τ/sec. Thus the
holographic limit is far beyond the currently practicable level of time measurements using atomic clocks. It is not
possible for example to measure Planckian phase variations between local time standards.

However, over short (but still macroscopic) time intervals, Planckian holographic noise in relative phase anisotropy
in different directions may be detectable using interferometers. For times ≈ 2L/c, interferometers are, in this limited
differential sense, by far the most stable clocks. The sensitivities attainable by current and planned experiments are
shown in Figure (1), along with the holographic noise prediction, Eq. (40). An expanded view (Figure 2), comparing
with a wider range of experimental approaches, shows that interferometry is currently the most promising approach
to detect the effect.

Existing gravitational wave interferometers, such as LIGO, VIRGO, and GEO-600, have approximately the required
phase sensitivity to reach the level in Eq.(40). The plotted experimental points are derived by taking published noise
curves[34, 35] at the most sensitive frequency, and evaluating the corresponding rms arm-difference fluctuation in a
single wave cycle at that frequency. The equivalent estimate is also shown for the proposed spaceborne interferometer,
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